Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries.

نویسندگان

  • Chao Wang
  • Wang Wan
  • Yunhui Huang
  • Jitao Chen
  • Heng Hui Zhou
  • Xin Xiang Zhang
چکیده

Owing to the layered structure and high theoretical capacity, MoS2 has attracted more and more interest as a potential anode material for lithium-ion batteries. However, it suffers from rapid capacity decay and low rate capability. In this work, we introduce a novel hierarchical material consisting of ultrathin MoS2 nanosheets grown on the surface of an active carbon fiber (ACF) cloth fabricated by a facile morphogenetic process. The ACF cloth acts as both a template and a stabilizer. The obtained MoS2/ACF cloth composite possesses hierarchical porosity and an interconnected framework. Serving as a free-standing and binder-free anode, it shows high specific capacity and excellent reversibility. A discharge capacity as high as 971 mA h g(-1) is attained at a current density of 0.1 A g(-1), and the capacity fade is only 0.15% per cycle within 90 cycles. Even after 200 cycles at a high current density of 0.5 A g(-1), the composite still shows a capacity of 418 mA h g(-1). The superior electrochemical performance of MoS2/ACF can be attributed to its robust structure and to the synergistic effects of ultrathin MoS2 nanosheets and ACF. This single-component anode that we propose benefits from a simplified electrode preparation process. The morphogenetic strategy used for the material production is facile but effective, and can be extended to prepare other metal sulfides with elaborate textural characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries

Mesoporous NiO nanosheets were directly grown on three-dimensional (3D) carbon cloth substrate, which can be used as binder-free anode for lithium-ion batteries (LIBs). These mesoporous nanosheets were interconnected with each other and forming a network with interval voids, which give rise to large surface area and efficient buffering of the volume change. The integrated hierarchical electrode...

متن کامل

Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3): towards high performance anode materials for lithium ion batteries

Two dimension (2D) layered molybdenum disulfide (MoS2) has emerged as a promising candidate for the anode material in lithium ion batteries (LIBs). Herein, 2D MoSx (2 ≤ x ≤ 3) nanosheet-coated 1D multiwall carbon nanotubes (MWNTs) nanocomposites with hierarchical architecture were synthesized via a high-throughput solvent thermal method under low temperature at 200°C. The unique hierarchical na...

متن کامل

Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance.

To solve the reduced output voltage caused by the high lithium redox potential of Co3O4 when applied as an anode material in full cells, an effective strategy is to partially replace Co by Mn to form MnCo2O4 without changing the original crystal structure. Herein, 3D hierarchical MnCo2O4 nanosheets arrays grown via a hydrothermal method on carbon cloths, as binder-free anodes for lithium-ion ba...

متن کامل

Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries

Three-dimensional self-supported cathode nanoarchitectures are the key to develop high-performance thin film lithium-ion microbatteries and flexible lithium-ion batteries. In this work, we have developed a facile “hydrothermal lithiation” strategy to prepare vertically aligned porous LiMn2O4 nanowall arrays, comprising highly crystallized spinel nanoparticles, on various conductive substrates w...

متن کامل

Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries

In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2014